If it's not what You are looking for type in the equation solver your own equation and let us solve it.
40x^2+80x-70=0
a = 40; b = 80; c = -70;
Δ = b2-4ac
Δ = 802-4·40·(-70)
Δ = 17600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{17600}=\sqrt{1600*11}=\sqrt{1600}*\sqrt{11}=40\sqrt{11}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(80)-40\sqrt{11}}{2*40}=\frac{-80-40\sqrt{11}}{80} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(80)+40\sqrt{11}}{2*40}=\frac{-80+40\sqrt{11}}{80} $
| 3b-5=2b÷6+2 | | 8x-5=5x-26 | | 8z^2-2=-8z | | -8p=-3p+10 | | 2x+71=50 | | c-11/3=2 | | 8q^2+3=0 | | 21x+21=777 | | 2+12x+3=136 | | 2z-8=7+5z | | 2s^2=-8s-8 | | 12=3(d+1) | | 16w^2-84w+63=0 | | 5=2(3+2x) | | 5x+90=120 | | 8s^2+7s+5=0 | | -6y=-5y-10 | | 5x+90=12 | | 4.1+x/5=-8.4 | | -3+w=-9-w | | 6q^2+6q=0 | | 7x-(-13)=20 | | 7(x-5)=6(x-2) | | 8d=9d-5 | | 2.5x-4=x+5 | | 9p^2=2 | | 8d=9d−5 | | -9r-5=9-7r | | 1=t-10/2 | | 14x-30=2(7x-15) | | 3(g+11)=9 | | -12=6/5x |